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a b s t r a c t

Using steady-state and time-resolved fluorescence spectroscopy, we investigated the intermolecular cou-
pling between mesogenic biphenyl–ester moieties of a thermotropic liquid crystal under phase transi-
tion. In the crystalline-to-smectic C transition, a broad excitation band centered at 280 nm and a
fluorescence redshift by 25 nm, followed by a drastic change in the fluorescence time-decay constant
(from �90 to �230 ps), are consistently observed. These changes result from the intermolecular config-
urational change from biphenyl–biphenyl to biphenyl–ester. Emissions from intermolecular complexes
such as J-aggregated biphenyls in crystalline and biphenyl–ester exciplexes in smectic C, smectic A,
and isotropic phases are characterized.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Molecular orientation and intermolecular coupling primarily
determine the physical properties of liquid crystalline materials
[1–4]. Mesophase transitions and molecular orientation of liquid
crystals (LCs) may be studied by differential scanning calorimetry
(DSC), polarized optical microscopy (POM), and X-ray diffraction
(XRD), whereas dipole or electronic interactions between mesogen
molecules may be examined by fluorescence spectroscopy [5–8].

In the early 1980s, Tamai et al. [9] reported the fluorescence
behavior of a luminescent LC, 4-cyano-4n0-octyloxybiphenyl
(8OCB), which has a phase that transitions from crystalline (k) to
smectic A (sA), nematic, and isotropic (i) forms. Various phases of
8OCB have been demonstrated to emit two kinds of fluorescence,
i.e., emissions from singlet monomer and excimer. In the 1990s,
Horie et al. [10,11] reported the fluorescence behavior of thermo-
tropic LC polyesters such as BB-n (mesogenic 4,40-biphenyldicarb-
oxylate containing various methylene units) and PB-n (mesogenic
4,40-dihydroxybiphenyl moieties containing various methylene
units). However, because of the limited time resolution of nanosec-
ond spectroscopy, kinetic information on intermolecular coupling
between the mesogens could not be obtained [12,13].

In the present work, we focus on time-decay constants found by
picosecond time-resolved fluorescence measurement on an LC
material consisting of biphenyl–ester rods and poly(propylene

oxide) coils under phase transition. The time-decay constants of
the LCs are systematically influenced by mesophase transitions
from k to smectic C (sC), sA, and i, thereby enabling us to demon-
strate dipole resonance or electron transfer interactions between
the mesogens.

The chemical structure of the LC rod-coil molecule is shown in
Figure 1A. The rod-coil molecule has the systematic name ethyl 4-
[4-[oxypoly(propyleneoxy)propyloxy]-40-biphenylcarboxyloxy]-
40-biphenylcarboxylate with poly(propylene oxide) coils of n = 8.
When heated, the material exhibits various LC mesophases, as
shown by DSC, POM, and XRD studies [14]. A DSC trace shown in
Figure 1B summarizes the heating temperature corresponding to
each mesophase. It has been demonstrated that the rods in the k
phase are fully interdigitated, whereas those in the sC phase are
tilted relative to the layer normal, as depicted in Figure 1B. In the
sA and i phases, the rods are randomly oriented. Based on this
structural information, we performed the steady-state and time-
resolved fluorescence study.

2. Experimental

Synthesis of the rod-coil molecules has been reported earlier
[14]. The steady-state spectra are recorded using a Hitachi F-
4500 fluorescence spectrophotometer equipped with a tempera-
ture-control unit (VTRC-640, JEIO TECH), while the time-resolved
fluorescence decays are measured using a time-correlated single
photon counting (TCSPC) system comprising a cavity-dumped
dual-jet dye laser (700 series, Coherent) pumped with a picosecond
Nd-YAG laser (Antares 76-YAG, Coherent) [15]. The fluorescence-
decay time constants are obtained by first deconvoluting the mea-
sured signal from the pump time profile (characterized by a full
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width at half maximum of �50 ps) and then fitting to a sum of
exponential terms [16]. The chi-square (v2) values for the fitting
are 1.0–1.3.

3. Results and discussion

The steady-state excitation and fluorescence spectra of the rod-
coil molecule as a function of temperature (20–110 �C) are shown
in Figure 2. Following phase transition, the material shows system-
atic changes in the steady-state spectra. In the k (40 �C)-to-sC

(60 �C) transition, the fluorescence spectrum redshifts by 25 nm,
while the narrow excitation spectrum peak at 350 nm broadens;
these changes are particularly observed to result from an excita-
tion that produced a new band centered at 280 nm. In transitions
from sC to sA and i, the fluorescence spectra are further redshifted,
similar to redshifts previously found for PB-n. In the k (40 �C)-to-sC

(60 �C) transition, the excitation and fluorescence spectra coopera-
tively change, consistent with the ground-state intermolecular
configurational change from biphenyl–biphenyl to biphenyl–ester
(inset of Figure 1B).

In an attempt to obtain kinetic information on coupling be-
tween the mesogens, we perform a picosecond time-resolved fluo-
rescence study on the spectra shown in Figure 2B. The fluorescence
time-decay profiles measured at shorter wavelengths (at 360 or
370 nm) are depicted in Figure 3. We measure multiple fluores-
cence-decay profiles corresponding to the entire spectral range
for the spectra shown in Figure 2B. These profiles are summarized
by time-decay constants and relative amplitudes, obtained from
the fitting procedure with multiexponential terms for each decay
(Table 1).

Figure 3 shows that the decay profiles are slower at higher tem-
peratures, which is inconsistent with the fast deactivation of an ex-
cited-state monomer at high temperatures via accelerated vibronic
relaxation. Thus, the slower decays indicate intermolecular defold-
ing between the mesogens, as depicted in Figure 1B. The fluores-
cence time decays following the photoexcitation of the k phase
are fitted to a sum of three exponential terms: an initial decay with
a time constant s1 of 90 ± 4 ps and two subsequent decays charac-
terized by s2 = 430 ± 46 ps and s3 = 1237 ± 123 ps (Table 1). The
decays following the photoexcitation of sC are fitted to a sum of
two exponential terms: an initial decay with a time constant of
234 ± 11 ps and a subsequent decay characterized by a time con-
stant of 1213 ± 75 ps.

The initial time-decay constant of s1 90 ± 4 ps found for k is
interesting, because of the abrupt association between the fully

0 40 80 120 160

E
nd

o

Temperature ( )

A O C OCH2CH3HO CH2CHO

CH3

( )
8

O

C

O

B

k S
C

S
A

i

o
c=o

o
c=o

o
c=o

o
c=o

o
c=o

o
c=o

o
c=o

o
c=o

o
c=o

o
c=o

o
c=o

o
c=o

Figure 1. (A) Chemical structure of the LC rod-coil molecule. (B) DSC trace of the
first heating scan of the material; mesophases (k, sC, sA, and i) and corresponding
molecular orientations are indicated.
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Figure 2. Steady-state excitation (A) and fluorescence (B) spectra of the rod-coil molecule as a function of temperature (20–110 �C); temperatures and corresponding
mesophases are indicated. The excitation and emission wavelengths for the fluorescence and excitation spectra are 300 and 450 nm, respectively.
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overlapped biphenyls, as depicted in the inset of Figure 1B. Cou-
pling of two biphenyls results in H-type (cofacial rings) or J-type
(stacked side by side) aggregates. The fluorescence lifetime of an
H-aggregate is generally known to increase with respect to that
of the monomer because of a disallowed transition to the ground

state, while the J-aggregate has a reduced lifetime because of an al-
lowed transition [17,18]. Another signature of the J-aggregate is a
sharp and redshifted excitation band due to dipole resonance cou-
pling between the chromophores, which follows Kasha’s rule
[19,20]. Two findings, i.e., the redshifted and narrow excitation
band at 350 nm and the fast decay (time-decay constant of
90 ± 4 ps), suggest J-aggregation between the biphenyls in the k
phase, which was not demonstrated by the earlier XRD study.

As seen in Table 1, the relative amplitude corresponding to the
time-decay constant of 90 ± 4 ps is lower at increased heating tem-
peratures (20–40 �C), indicating gradual defolding between the
biphenyls in the k phase. Further heating at 60 �C greatly changes
the time-decay characteristics because of the intermolecular con-
figurational change from biphenyl–biphenyl to biphenyl–ester. In-
stead of time-decay constants of 90 ± 4 ps and 430 ± 46 ps in the k
phase, a time-decay constant of 234 ± 11 ps is observed in the sC

phase, consistent with the notable spectral changes shown in Fig-
ure 2. We attribute the time-decay constant of 234 ± 11 ps to the
rate of deactivation from the excited-state intermolecular charge-
transfer (CT) complex, i.e., exciplex, between the biphenyl and es-
ter groups. This deactivation will be further demonstrated.

The larger time-decay constants of s2 = 430 ± 46 ps and
s3 = 1237 ± 123 ps found for k are consistent with the emission
time-decay constants obtained from an earlier study on the solu-
tion phase [21]. The rod-coil molecule has been demonstrated to
exhibit CT emission in methanol, characterized by a time constant
of 379–510 ps. This emission is followed by a local excited-state
(LE) emission characterized by a time constant of �2 ns. By
increasing the material concentration in methanol (from
1 � 10�6 M to 1 � 10�4 M), the CT emission lifetime was reduced
from 510 to 379 ps because of intermolecular CT complex forma-
tion between the mesogens [21].

The time-decay constant (430 ± 46 ps) decreases (234 ± 11 ps)
after the k-to-sC phase transition primarily resulting from the de-
creased intermolecular distance between the biphenyl and ester
moieties (insets of Figure 1B). This transition is succeeded by
stronger intermolecular CT coupling, which similarly leads to a
shorter decay time, as observed in its concentrated methanol solu-
tion in earlier studies. The time-decay constant of 234 ± 11 ps
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Figure 3. Time-dependent fluorescence decay profiles of the rod-coil molecule as a
function of temperature (20–110 �C); temperatures and corresponding mesophases
are indicated. The decays are measured at 360 nm for the 20–60 �C data and at
370 nm for the 80–110 �C data. The excitation wavelength is 293 nm. IRF indicates
the instrument response function of the TCSPC system.

Table 1
Decay parameters of the rod-coil molecule as a function of temperaturea.

Temperature
(�C)

Phase Emission wavelength
(nm)

Fitted decay timesb

(ps)

s1 s2 s3

20 k 360 87 (83%) 498 (10%) 1140 (7%)
380 91 (80%) 455 (12%) 1138 (8%)
420 94 (69%) 455 (16%) 1265 (15%)

40 k 360 85 (52%) 378 (18%) 1168 (30%)
380 95 (46%) 406 (21%) 1250 (33%)
420 91 (42%) 390 (29%) 1463 (29%)

60 SC 360 240 (29%) 1102 (71%)
380 253 (33%) 1158 (67%)
420 232 (46%) 1244 (54%)

80 SC 370 220 (26%) 1201 (74%)
400 235 (33%) 1267 (67%)
430 225 (46%) 1307 (54%)

100 SA 370 260 (13%) 1262 (87%)
420 260 (18%) 1404 (82%)
460 277 (36%) 1549 (64%)

110 i 370 395 (12%) 1283 (88%)
420 370 (22%) 1488 (78%)
460 350 (39%) 1607 (61%)

a The excitation wavelength is consistently 293 nm.
b The following fitting function is used: I(t) = A1 exp(�t/s1) + A2 exp(�t/s2) + A3 exp(�t/s3), where I(t) is the time-dependent fluorescence intensity, A is the amplitude

(noted in parentheses as the normalized percentage, i.e., [Ai/(A1 + A2 + A3)] � 100), and s is the fitted decay time. The v2 values for the fitting are 1.0–1.3.
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increases to 266 ± 11 and 372 ± 23 ps from sC to sA and i, possibly
indicating a weakly bound intermolecular CT complex in the mo-
bile phases.

In gas-phase jet spectroscopy, the formation of an intracluster
exciplex between benzaldehyde and 1,4-dimethoxybenzene re-
sults in a broad excitation band located at higher energy, red-
shifted fluorescence, and a faster fluorescence time-decay profile
[22], as in the case of the biphenyl–ester exciplex.

Finally, the time-decay constant 1294 ± 149 ps is consistently
observed with all mesophases, while its relative amplitude is
markedly increased by heating the material at higher tempera-
tures, i.e., by accelerating the defolding process. Following these
characteristics, we attribute the time-decay constant of
1294 ± 149 ps to the rate of deactivation from the excited-state
monomeric mesogen, i.e., from the intramolecular CT or LE state.

4. Conclusion

From the analysis of the steady-state and time-resolved fluores-
cence spectroscopic data on a thermotropic LC composed of biphe-
nyl–ester rod and poly(propylene oxide) coils, we demonstrate
that the J-aggregated biphenyls in k are characterized by a lower
energy excitation band at 350 nm and a faster fluorescence time
decay (time-decay constant of �90 ps). In sC, an intermolecular
CT complex between the biphenyl and ester moieties is character-
ized by a fluorescence redshift by �25 nm, followed by deactiva-
tion from the excited-state biphenyl–ester exciplex, whose rate is
characterized by a time-decay constant of �230 ps. Transitions
from sC to sA and i lead to further redshifts in the fluorescence spec-
tra and subsequent increased fluorescence time-decay constants of
260–370 ps, indicating a weakly bound intermolecular CT complex
in the mobile phases.
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